Conductivity and Electroosmotic Transport in Nanofluidic Channels
نویسندگان
چکیده
منابع مشابه
Electroosmotic Flow in Nanofluidic Channels
We report the measurement of electroosmotic mobilities in nanofluidic channels with rectangular cross sections and compare our results with theory. Nanofluidic channels were milled directly into borosilicate glass between two closely spaced microchannels with a focused ion beam instrument, and the nanochannels had half-depths (h) of 27, 54, and 108 nm and the same half-width of 265 nm. We measu...
متن کاملFabrication and electroosmotic flow measurements in micro- and nanofluidic channels
An easy method for fabricating microand nanofluidic channels, entirely made of a thermally grown silicon dioxide is presented. The nanochannels are up to 1-mm long and have widths and heights down to 200 nm, whereas the microfluidic channels are 20-lm wide and 4.8-lm high. The nanochannels are created at the interface of two silicon wafers. Their fabrication is based on the expansion of growing...
متن کاملIon transport in nanofluidic channels.
In this tutorial review, recent developments in modeling and experimental studies on nanofludics were reported. Nanofluidic studies were categorized into two groups depending on the characteristic length scale. When the size of the nanochannels and pores is 5-100 nm, electrostatic interactions are dominant, and ion and fluid flow can be analyzed by continuum dynamics. Various nanofluidic device...
متن کاملSurface-charge-governed ion transport in nanofluidic channels.
A study of ion transport in aqueous-filled silica channels as thin as 70 nm reveals a remarkable degree of conduction at low salt concentrations that departs strongly from bulk behavior: In the dilute limit, the electrical conductances of channels saturate at a value that is independent of both the salt concentration and the channel height. Our data are well described by an electrokinetic model...
متن کاملConductivity-based detection techniques in nanofluidic devices.
This review covers conductivity detection in fabricated nanochannels and nanopores. Improvements in nanoscale sensing are a direct result of advances in fabrication techniques, which produce devices with channels and pores with reproducible dimensions and in a variety of materials. Analytes of interest are detected by measuring changes in conductance as the analyte accumulates in the channel or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microscopy and Microanalysis
سال: 2013
ISSN: 1431-9276,1435-8115
DOI: 10.1017/s1431927613006454